Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Blood Med ; 13: 447-459, 2022.
Article in English | MEDLINE | ID: covidwho-2005803

ABSTRACT

Objective: The present investigation aims on the clinical attributes and haematological parameters between symptomatic (COVID-19 ICU) and asymptomatic (COVID-19 homes isolation) patients as predisposing sign for COVID-19 related mortality. Materials and Methods: A retrospective cohort research was conducted of admitted patients to ICU, who were suffering from severe COVID-19 in Aseer Central Hospital, Abha, Kingdom of Saudi Arabia (KSA) from July 2020 until September 2020. The study included individuals with COVID -19 and ICU admission as symptomatic group and others who are COVID-19 positives with quarantine as asymptomatic group. Epidemiological, clinical and haematological laboratory data were retrospectively collected, analysed with control subjects. Results: Of the 38 ICU patients studied, the most common symptoms were fever and respiratory distress (100%), cough (86.8%). Majority were of Saudi origin (78.9%). Eighteen (47.4%) COVID-19 ICU patients showed leukocytosis, 6 (15.8%) had severe thrombocytopenia (with most having thrombocytopenia), 18 (47.4%) were anaemic. A significant correlation was observed between the WBC, RBC, Hb, platelets, neutrophil and lymphocyte count between ICU inmates compared with quarantine (p < 0.001) and RBC, Hb, neutrophil and lymphocyte count with control groups (p < 0.001). Conclusion: From the observations it is evident that, the blood tests have potential clinical value in predicting COVID-19 progression. Further, patient characteristics including age, leukocyte count, RBC, platelets and differential leukocyte counts may be significant predictors for monitoring the progression of the critical illness observed in SARS-COV-2 patients. Also, treatment procedures can be re-defined further to reduce COVID-19 mortalities in more critically ill COVID-19 individuals.

2.
Clin Exp Pharmacol Physiol ; 49(4): 483-491, 2022 04.
Article in English | MEDLINE | ID: covidwho-1691664

ABSTRACT

Progress in the study of Covid-19 disease in rodents has been hampered by the lack of angiotensin-converting enzyme 2 (ACE2; virus entry route to the target cell) affinities for the virus spike proteins across species. Therefore, we sought to determine whether a modified protocol of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome in rats can mimic both cell signalling pathways as well as severe disease phenotypes of Covid-19 disease. Rats were injected via intratracheal (IT) instillation with either 15 mg/kg of LPS (model group) or saline (control group) before being killed after 3 days. A severe acute respiratory syndrome (SARS)-like effect was observed in the model group as demonstrated by the development of a "cytokine storm" (>2.7 fold increase in blood levels of IL-6, IL-17A, GM-CSF, and TNF-α), high blood ferritin, demonstrable coagulopathy, including elevated D-dimer (approximately 10-fold increase), PAI-1, PT, and APTT (p < 0.0001). In addition, LPS increased the expression of lung angiotensin II type I receptor (AT1R)-JAK-STAT axis (>4 fold increase). Chest imaging revealed bilateral small patchy opacities of the lungs. Severe lung injury was noted by the presence of both, alveolar collapse and haemorrhage, desquamation of epithelial cells in the airway lumen, infiltration of inflammatory cells (CD45+ leukocytes), widespread thickening of the interalveolar septa, and ultrastructural alterations similar to Covid-19. Thus, these findings demonstrate that IT injection of 15 mg/kg LPS into rats, induced an AT1R/JAK/STAT-mediated cytokine storm with resultant pneumonia and coagulopathy that was commensurate with moderate and severe Covid-19 disease noted in humans.


Subject(s)
Acute Lung Injury/etiology , Blood Coagulation Disorders/etiology , COVID-19/pathology , Cytokine Release Syndrome/etiology , Hemorrhage/etiology , Lipopolysaccharides/adverse effects , Lung Diseases/etiology , Receptor, Angiotensin, Type 1/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Acute Lung Injury/pathology , Animals , Blood Coagulation Disorders/pathology , COVID-19/etiology , Cytokine Release Syndrome/pathology , Disease Models, Animal , Hemorrhage/pathology , Janus Kinases , Lung Diseases/pathology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL